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In  Part  2  of  this  series  we  introduced  the  Atomic  Information  Resource  (AIR)  data  model  of  the

AtomicDB database  management  system.  In  this  part  we  present  a  simple  but  extensive  example

on  various  representations  of  number  three  using  the  poweful  Mathematica  functions  and  the

unique  features  of  Mathematica  notebooks.  We  relate  these  with  the  three-faceted  abstraction

mechanism in R3DM and we discuss the principles and the architectural design of R3DM, a concep-

tual framework based on semiosis, in Part 4.

Part3: The number ‘3’ and The Three-Faceted 

Abstraction Mechanism in R3DM

◆ Quick Introduction to Forms and In-formation

Etymology

Information origin

The  origin  of  the  word  information  reveals  its  use.  Inform  comes  from  the  Latin  verb  informare,

which means to give form, or to form an idea of. Where form is the mold, the container, that is used

to  give shape to  molten,  i.e.  the content.  At  the time computer  scientists  were designing and con-

structing the first  digital  computer,  at  the same time digital  information was given birth  and shape.

Modern computers operate with memory chips and those are mere containers of storing sequences

of 0s and 1s.

Plerophoria origin

The above interpretation and use of the word information is typical of western culture way of think-

ing.  Although  it  is  convenvient  to  keep  things  in  boxes,  Eastern  philosophers  used  to  think  differ-



ently.  The  ancient  and  modern  Greek  word  for  information  is  πληροφορία,  which  transliterates

(plērophoria)  from  πλήρης  (plērēs)  “fully”  and  φέρω  (phorein)  frequentative  of  (pherein)  to  carry-

through.  This  contrasting  use  and  interpretation  of  the  word  plerophoria  traces  its  roots  back  to

Socrates,  Plato,  and  Aristotle’s  theory  of  semiosis.  In  this  regard  every  word  plays  the  role  of  a

symbol, i.e. sign that can be interpreted to communicate information to the one decoding that spe-

cific type of sign. There is an intimate  and inseperable connection of the signified, i.e. the concept

whose meaning the interpretant attempts to decode, with the signifier, i.e. sign’s physical form such

as the sound of a word. Every bit of digital information, i.e. 0 or 1 assimilates this triadic relationship.

Bits  are  symbols  signified  as  true  or  false  taking  the  form  of  input  voltage  (signifier).  The  infinite

combination of sequences of such symbols gives us the power to represent anything digitally. Their

meaning  depends  on  how  we  interpret  these  sequences,  as  numbers,  letters,  sounds,  color,  or

anything else that can be encoded. The form of the signifier is not limited to that of a mere container

that stores a sequence of 0s and 1s. It  is a fully functional level of abstraction connected to higher

and lower levels by applying recursively the theory of semiosis until we reach CPU’s binary level.

The Turing Machine
One-tape  Turing  machine  according  to  Hopcroft  and  Ullman  can  be  formally  defined  as  a  7-tuple.

Elements  of  this  tuple  are  members  of  three  distinct  sets.  A  non-empty  set  of  tape  alphabet  sym-

bols, e.g. {0, 1}, a non-empty set of states, e.g. {A, B, C, HALT} and a set of state transitions e.g. {L,

R}. Turing machine reads the tape symbols and executes a sequence of instructions according to a

state  table.  Although this  is  not  the  space  and  time to  adapt  the  theory  of  semiosis  on  the  Turing

machine we can cleary see the role of the tape symbol as that of a sign, the signified instruction that

is executed according to the interpretation given by the state table, and the physical form it takes as

a printed text symbol on a white square of a paper tape. And of course you can apply the same logic

to  the  set  of  states  and the  set  of  transitions  because these are  symbols  (signs)  too;  they  can be

interpreted and realized in some other physical or non-physical form.

Functional Representation
Functional  representation  is  the  core  operation  of  R3DM.  Everything  is  represented  as  a  function

that  is  mapping  values  from  one  domain  to  another.  You  may  view  functions,  as  transformations.

This is also how they operate in Wolfram Language. They transform expressions from one symbolic

form to another.

From bits to strings

In the following example we will see how we can apply the theory of semiosis so that it can naturally

follow from the etymology of the word plerophoria as it has been discussed above.

The Capacitor Discharge Function

A  transistor  and  a  capacitor  are  paired  to  create  a  memory  cell,  which  represents  a  single  bit  of

data. When capacitor is discharged, i.e.the voltage is between zero and one Volts, we represent its

state with ‘0’  and when the voltage is  between two and five Volts  capacitor’  s  state is  represented

with ‘1’. 
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fCapacitor[x_] := 0 /; 0 < x < 1

fCapacitor[x_] := 1 /; 2 < x < 5

Plot[fCapacitor[x], {x, 0, 5}]
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Notice  that  numbers  here  in  the  intervals  {0,1}  and  {2,5}  are  interpreted  as  voltage  values.  If  we

want to be precise we will use the Quantity function and unit symbols in Mathematica.

Quantity[3, "Volt"]

3 V

And we will rewrite the function above to accept voltage values only.

fvCapacitor[v_?QuantityQ] := 0 /; 0 < QuantityMagnitude[v] < 1

fvCapacitor[v_?QuantityQ] := 1 /; 2 < QuantityMagnitude[v] < 5

fvCapacitor[3 V]

1

This  is  a  simple  but  powerful  example  that  demonstrates  how  a  symbol,  the  number  3  in  arabic

numeral  form,  has  been  transformed,  interpreted  as  a  voltage  value  through  the  function  Quantity

and then how it was interpreted again as 0 or 1 through the capacitor discharge function. Let us see

now how 0 and 1 can be interpreted.

The Transistor Switch Function

For  the  transistor,  1  is  interpreted  as  the  READ  operation  and  0  is  interpreted  as  the  CHANGE

operation.

Transistor state = 1 -> Read Capacitor State

Transistor state = 0 -> Change Capacitor State

In Mathematica we can represent the above transformations with rules such as

{1 → READ, 0 → CHANGE};

Notice here that READ and CHANGE are symbols that have not been defined.

Or we can build another function that accepts only two values, 0 and 1 as the transistor state input

and outputs symbols that represent operations on the capacitor state.

fTransistor[state_] := READ /; state == 1

fTransistor[state_] := CHANGE /; state == 0
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{fTransistor[1], fTransistor[0]}

{READ, CHANGE}

We may also say that READ is represented with 1 and CHANGE with 0

Logic Gate Representation

A different meaning is assigned here for the same values of 0 and 1. When state is 1 that is inter-

preted as the logic value True and when it is 0 that is interpreted as the logic value False.

{1 → True, 0 → False};

Or define a function as before 

fMemory[state_] := True /; state ⩵ 1

fMemory[state_] := False /; state ⩵ 0

{fMemory[0], fMemory[1]}

{False, True}

In the opposite way we can represent True and False with 1 and 0

Boole is  a Wolfram Language function that  transforms symbols like True to integer 1 and False to

integer 0

{Boole[True], Boole[False]}

{1, 0}

We may also say that True is represented with 1 and False with 0

Dichotomus Representation

From the examples above it  becomes clear  that  we can assign any interpretation to a dichotomus

type of variable which we assign values such as Male/Female, On/Off,  Yes/No or others. In all  the

cases  the  representation  can  be  done  with  ‘0’  and  ‘1’  symbols  and  the  physical  realization,  i.e.

storage of data can also be done using the same two integers.

Memory Addressing and Interpretation

A  memory  container  is  defined  by  a  starting  memory  address  and  the  sequence  of  bits  to  read,

memLength. This is interpreted as a memObject.

isMemoryFunction[memAddress, memLength] → memObject

isMemoryFunction[memAddress, memLength] → memObject

For example a sequence of 8 bits, byte, that is encoded here with the string

StringLength["01000001"]

8

FromDigits["01000001", 2]

65

This  byte  is  decoded  in  decimal  system  as  the  integer  65.  And  then  according  to  ASCII  coding

scheme, number 65 is decoded as the character “A”. This in turn is interpreted as the capital letter

“A” of the English Alphabet. Therefore this specific “A” can be represented with either an integer, or
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a binary number, or a character.

Head["A"]

String

ToCharacterCode["A"][[1]]

65

Head[%]

Integer

BaseForm[65, 2]

10000012

Head[%]

Integer

Therefore  in  the  example  above  we  can  distinguish  the  notion  of  the  interpretation,  e.g.  “The

capital letter A of the English Alphabet” as an information resource, that remains the same for any

representation, i.e. the displayed form of it such as character “A”, the integer number 65, and the

binary number 10000012.  There is a third notion of the realization,  i.e. the type of container that

stores the value of the symbol for evaluation purposes. In the first case the character “A”  is stored

into a string container but the other two representations are integer expressions. The binary form of

letter “A” affects printing but not evaluation as it is stored in the same way as number 65.

Now consider a 32bit representation of the number 65

StringLength["00000000000000000000000001000001"]

32

Head["00000000000000000000000001000001"]

String

FromDigits["00000000000000000000000001000001", 2]

65

This 32bit representation is stored and it is evaluated as a string of digits, not as a number. It is the

function FromDigits that converts the string to an integer number.

Building higher abstractions from primitives

Display Representation - VGA - compatible text mode

According to Wikipedia, “Text mode is a computer display mode in which content is internally repre-

sented on a computer screen in terms of characters rather than individual pixels”.

By far the most common text mode used in DOS environments, and initial Windows consoles, is the

default  80 columns by 25 rows,  or  80x25,  where each character  is  represented by a dot  matrix  (a

matrix  of  bits).  The MDA (Monochrome Display  Adapter)  mode is  using a  9x14 matrix  of  pixels.  A

pixel is is the smallest controllable element of a picture represented on the screen. The total graph-

ics resolution of the MDA is calculated by multiplying the 80x25 matrix of characters with the 9x14
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matrix of pixels which is 720x350 pixels.

Therefore, any display content can be represented on a 80x25 matrix of characters and the 80x25

matrix  of  characters  is  realized  on  a  720x350 matrix  of  pixels.  The most  primitive  element  here  is

the pixel and we use them to build a higher abstraction layer which is made of characters. Then a

character  can  play  the  role  of  a  fundamental  unit  that  is  used  to  compose  words,  sentences  and

even textual graphics.

Content Representation - Strings, Words, Files and Folders and Drives

Apparently  there  is  a  chain  of  interpretations,  representations  and  realizations  that  are  built  in  a

consecutive  order.  This  chain  of  semiosis  reveals  the  mechanism  that  we  can  use  to  build

higher levels of abstraction. At each step the symbol that is used to link together the signifier with

the signified can become a fundamental unit, i.e. signifier to build the next level of abstraction. Thus

we can move in two directions, we can generalize or we can specialize. In the following example we

start with a generalization procedure, and we read from left to right.

Matrix  of  Bits  (Signifier) isSymbolizedAs→Character  (Sign) isSigni

fiedAs→Letter (Signified)

Sequence  of  Characters  (Signifier)  isSymbolizedAs→String  (Sign)  isSigni-

fiedAs→Word (Signified)

Sequence  of  Strings  (Signifier) isSymbolizedAs→Sentence  (Sign) isSigni

fiedAs→Statement (Signified)

Sequence  of  Sentences  (Signifier) isSymbolizedAs→Text  File  (Sign) isSigni

fiedAs→Document (Signified)

Collection  of  Text  Files  (Signifier) isSymbolizedAs→Folder  (Sign) isSigni

fiedAs→Folded cover for holding a collection of documents (Signified)

Collection  of  Folders  (Signifier) isSymbolizedAs→Drive  (Sign)

isSignifiedAs→Filing Cabinet (Signified)

The  same  example  can  be  read  backwards,  i.e.  from  right  to  left  if  we  change  the  linked

phrases

Collection of Folders (Realization) ←isRealizedAs Drive (Representation) ←isRepre-

sentedAs Filing Cabinet (Resource)

Collection of Text Files (Realization) ←isRealizedAs Folder (Representation) ←isRepre-

sentedAs Folded cover for holding a collection of documents (Resource)

Sequence of Sentences (Realization) ←isRealizedAs Text File (Representation) ←isRepre-

sentedAs Document (Resource)

Sequence of String (Realization) ←isRealizedAs Sentence (Representation) ←isRepre-

sentedAs Statement (Resource)

Sequence of Characters (Realization) ←isRealizedAs String (Representation) ←isRepre-

sentedAs Word (Resource)

Matrix of Bits (Realization) ←isRealizedAs Character (Representation) ←isRepre-

sentedAs Letter (Resource)

We  have  constructed  a  uniform  generalization  of  the  abstraction  mechanism  with  a  three-faceted

representation:  
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Signifier-Sign-Signified  (S3)  or  Realization-Representation-Resource  (R3)  based  on  the  theory  of

semiosis.

Symbolic Expressions
Everything  in  Wolfram  Language  is  represented  with  an  expression,  but  every  expression  has  a

head,  i.e.  Symbol  that  specifies  its  functionality  and computability.  The Basic  Internal  Architecture

tutorial  explains  how  crucial  is  the  role  of  Wolfram  Language  Symbol.  Every  expression  is  struc-

tured and parsed according to the placement of symbols. 

For  each  Symbol,  a  pointer  entry,  i.e.  a  fixed  computer  memory  address,  in  a  central  table  of  all

symbols  is  defined  in  a  Wolfram Language  session.  Therefore  each  Symbol  represents  a  pointer

that  specifies  an  address  in  computer  memory  at  which  the  internal  representation  of  the  actual

expression  is  found.  This  memory  address  contains  also  a  pointer  to  a  string  giving  the  symbol’s

name,  as  well  as  other  pointers,  i.e.  other  Symbols,  to  evaluate  subexpressions.  The  names  of

symbols  defined  by  the  user  in  a  session  are  placed  in  the  Global`  context.  We can  take  a  list  of

these with the following command.

Names["Global`*"]

{CHANGE, fCapacitor, fMemory, fTransistor, fvCapacitor,

isMemoryFunction, memAddress, memLength, memObject, READ, state, v, x}

Built-in Wolfram language objects are in the System` context. Therefore we can issue the following

command  to remove completely any previously user-defined symbols.

Remove["Global`*"]

Names["Global`*"]

{}

◆ Functional Representations of Number 3

The Sign - Representation

In this section we will investigate the various forms that a symbol related to number ‘3’ can take. In

R3DM this is the sign that is used to signify something at a higher level and at the same time

it is used to symbolize an internal representation, a realization.

Display Format
We start our journey into the re-presentations   with the display format, i.e. something that is pre-

sented, appears on the screen with a certain form

BaseForm[3, 2]

112
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"11""2" // Head

Integer

Number  three  is  displayed  here  in  a  binary  format,  but  internally  it  is  realized,  evaluated,  as  an

integer.

Cell Representation

Cell  is  the  low-level  representation  of  a  cell  inside  a  Wolfram  System  notebook.  In  the  previous

examples  the  input  of  a  symbol,  such  as  Three,  in  a  Wolfram  System  Notebook,  is  represented

underneath with the string “Three”. That string is encoded in another expression, i.e. a Cell expres-

sion,  that  prints  its  content,  BoxData,  with  a  specified  format.  We  can  select  “Show  Expression”

option from the menu Cell, or use the shortcut Shift+Ctrl+E to examine the underlying cell structure

of any expression that is displayed on Input or Output Notebook cells.

Cell[BoxData["Three"], "Input", FontSize → 24] // DisplayForm

Three

Three // Head

ExpressionCell

Box Representation

The following low-level box constructs represents a textual and graphical display form of three to the

power  of  three  (33).  These  boxes  are  usually  arranged  in  a  nested  collection  that  correspond  to

objects  that  are  to  be  placed  at  definite  relative  positions  in  two  dimensions,  see  “Representing

Textual Forms by Boxes”,

SuperscriptBox of 3 to the 3 ≅ 33

SuperscriptBox[3, 3] // StandardForm

SuperscriptBox[3, 3]

% // Head

SuperscriptBox

Here  StandardForm refers  literraly  to  the  output  of  the  Input  Cell  Expression.  But  this  specific  cell

expression  cannot  be  interpreted or  formatted  further.  Let  us  examine the  structure  of  the  expres-

sion underneath.
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Cell[

BoxData[

RowBox[

{"SuperscriptBox", "[", RowBox[{"3", ",", "3"}], "]"}

]

], "Output"

] // DisplayForm

SuperscriptBox[3, 3]

% // Head

Cell

But the RawBoxes construct on the above SuperscriptBox expression prints the low-level Superscrip-

tBox  construct  in  explicit  two-dimensional  form.  Nevertheless  RawBoxes  IS  NOT  a  wrapper,  it

affects both display and evaluation.

SuperscriptBox[3, 3] // RawBoxes

33

% // Head

RawBoxes

The same result is printed using the DisplayForm

SuperscriptBox[3, 3] // DisplayForm

33

% // Head

SuperscriptBox

Cell[BoxData[ SuperscriptBox["3", "3"]], "Input"] // DisplayForm

33

% // Head

Cell

%% // StandardForm

Cell[BoxData[SuperscriptBox[3, 3]], Input]

Display Wrappers

Notice that in the evaluation of the expressions above, FullForm, InputForm, StandardForm, Display-

Form act as “wrappers”. They affect display but not evaluation.

Input and Output Representations

Expressions in Wolfram language can be displayed with many formats depending on whether they

are used for input or output. Normally the naming of these display formats such as InputForm or
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OutputForm are  paired  with  the  input  and  output  cells  that  are  used  for  entering  expressions  and

displaying  results,  but  they  can  be  interchangeable.  There  are  many  ways  to  enter  (input  of)  an

expression,  e.g.  from keyboard,  from a  notation  palette,  from cutting  and  paste  other  Cell  expres-

sions. Similarly there are many ways to display a result, i.e. what an expression returns as output. 

For  example,  in  the  following  input  expression  of  3 ,  a  two-dimensional  form,  we  instruct  the

kernel to output the result using the InputForm format. Notice that this is not necessarily the format

we use to enter an expression. In fact input expressions can take any form, including the InputForm

of course.

3 // InputForm

Sqrt[3]

Or  if  we  reverse  the  display  formats,  then  we  can  use  one-dimensional  form  for  the  input  of  the

expression, i.e. use the keyboard to enter Sqrt[3] and request a standard form for the output of the

expression :

Sqrt[3] // StandardForm

3

StandardForm is the default format that is used for the output of expressions

Now, use the keyboard input form, Sqrt[3], again and format the output in a more traditional mathe-

matical notation form : 

Sqrt[3] // TraditionalForm

3

It is important at this point to understand that the various forms, that are used for input and output of

expressions,  do  not  affect  the  evaluation  of  the  expression.  This  is  because  evaluation  depends

always  on  the  internal  representation.  FullForm,  InputForm,  StandardForm,  DisplayForm  act  as

display wrappers.

2D Low-Level Representation

We continue our discussion with more examples on the 2D display format of expressions.

Superscript of 3 to the 3 - 33

The following expression represents a 2D object that is displayed with a proper superscript format.

Notice that  this  expression is  not  interpreted as Power[3,3].  It  is  only  formatted as 33  in  Standard-

Form and DisplayForm

Superscript[3, 3] // DisplayForm

33

If we copy and paste the previous output (33) into an input expression we will have

33 // Defer // FullForm

Defer[Superscript[3, 3]]

10     Towards a New Data Modelling Architecture - Part 3.nb



But, entering superscript notation directly, through x Ctrl + ^ y will be interpreted as Power[x, y] :

33 // Defer // FullForm

Defer[Power[3, 3]]

Supersciptbox is the low-level representation of Superscript.

SuperscriptBox["3", "3"] // DisplayForm

33

If we examine the previous output expression (33) we see that it is evaluated as a Power expression

33 // Defer // FullForm

Defer[Power[3, 3]]

and If we use a more generic low-level representation using the TemplateBox

TemplateBox[{"3", "3"}, "Superscript"] // RawBoxes

33

this time the full form of this output is a Superscipt expression

33 // Defer // FullForm

Defer[Superscript[3, 3]]

and then to print low - level boxes we can use an expression such as

Cell[BoxData[TemplateBox[{"3", "3"}, "Superscript"]], "Output"] // DisplayForm

33

But in this case the last output (33) is internally represented as

33 // Defer // FullForm

Defer[ExpressionCell[Superscript[3, 3], "Output"]]

With  this  example  we  see  how  differently  the  kernel  evaluates  33  according  to  its  internal

representation

Power of 3 to the 3  - 33

The following expression is evaluated and the integer 27 is returned as the output result.

33

27

We use the unevaluated form of the expression above to examine other display formats

Unevaluated33 // FullForm

Unevaluated[Power[3, 3]]

Unevaluated33 // InputForm

Unevaluated[3^3]

Unevaluated33 // StandardForm

Unevaluated33
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Unevaluated33 // DisplayForm

Unevaluated33

Square root of 3 - 3
1
2 

The symbol “Sqrt” is intepreted as the square root. We can enter an expression such as Sqrt[3] with

this  input  format  and  the  Wolfram  Language  evaluates  it  and  returns  the  result  with  the  default

output format that prints a root symbol instead of the string “Sqrt”. Both the input and output format

of Sqrt[3] can be displayed by entering cell expressions.

Sqrt[3]

3

The following cell expressions underneath are visual representations of the above input and output

expressions, notice that a special SqrtBox is used to display the root symbol on a two-dimensional

output format.

Cell[

BoxData[

RowBox[{"Sqrt", "[", "3", "]"}]], "Input"] // DisplayForm

Sqrt[3]

Cell[

BoxData[

SqrtBox["3"]], "Output"] // DisplayForm

3

% // InputForm

Cell[BoxData[\(\@3\)], "Output"]

%% // StandardForm

Cell[BoxData[SqrtBox[3]], Output]

%%% // FullForm

Cell[BoxData[SqrtBox["3"]], "Output"]

Let us print another cell  expression of Sqrt[3] with a font style similar to that used in a SubSection

and a Bold Font.

Cell[

BoxData[

SqrtBox["3"]], "Subsection", FontWeight → "Bold"] // DisplayForm

3

Other display formats for the square root of 3

Sqrt[3]

3
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% // FullForm

Power[3, Rational[1, 2]]

% // InputForm

Sqrt[3]

% // StandardForm

3

% // TraditionalForm

3

Multiplication 3x3

3 × 3

9

Unevaluated[3 × 3] // FullForm

Unevaluated[Times[3, 3]]

Unevaluated[3 × 3] // InputForm

Unevaluated[3*3]

Cell[BoxData[RowBox[{3, " ", 3}]]] // DisplayForm

3 × 3

% // FullForm

Cell[BoxData[RowBox[List[3, " ", 3]]]]

%% // InputForm

Cell[BoxData[RowBox[{3, " ", 3}]]]

%%% // StandardForm

Cell[BoxData[RowBox[{3, , 3}]]]

Internal Representation
Internal representation is the full functional form of an expression. Consider the square root of three,

it can be displayed with the standard square root symbol such as

3 // FullForm

Power[3, Rational[1, 2]]

But when we ask to see the full functional form, the kernel returns a different expression with other

symbols that represent functions such as the Power and Rational.
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3 // Head

Power

We can display it as a tree to visualise the structure of the expression with Symbols as Heads and

Atoms  as  leaf  nodes.  This  is  also  a  nice  visualization  of  the  internal  representation  that  is  used

inside the Wolfram kernel for evaluation purposes, free of any display formats, textual styles, graph-

ics or 2D notation format.

Hold[Power[3, Rational[1, 2]]] // TreeForm

Hold

Power

3 Rational

1 2

String vs Symbol Representation
Let us take the string form first and apply the Head function

"Three"

Three

% // Head

String

Use a symbol now

Three

Three

% // Head

Symbol

Notice that in both cases, the output (Three) looks the same, but it is not internally. In the first case it

is  a  string,  in  the  second  it  is  a  symbol.  The  input  of  an  expression  such  as  Three,  or  three  in  a

notebook  cell  is  automatically  recognised  by  Wolfram  kernel  as  a  symbol.  The  “Symbol”  Function

refers to a symbol with the specified string name and returns the Symbol with that  name. The two
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strings in the following list are symbolized as Three and  three

Symbol /@ {"Three", "three"}

{Three, three}

Head /@ %

{Symbol, Symbol}

String vs Numeric Representation
How about entering the following list 

{"3", "3."}

{3, 3.}

Notice that the output looks like a list of two numbers an integer and a decimal one but it is evalu-

ated as a list of two strings

Head /@ %

{String, String}

While in the following one

{3, 3.}

{3, 3.}

Head /@ %

{Integer, Real}

Entity Representation
Wolfram  researchers  have  implemented  a  different  display  format  for  representing  entities  of  any

kind including,  characters,  and words.  This entity  representation is analogous to the signified facet

of the sign (symbol) in R3DM. The displayed form of this symbol, an orange box, signifies that the

content has been assigned a specific meaning. Based on this meaning the kernel can evaluate the

entity, i.e. the content is signified.

Entity["Character", 51] // StandardForm

3

3 (character)

3

3 (character) // Head

Entity
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3 (character) // FullForm

Entity["Character", 51]

EntityValue 3 (character) , "Name"

3

% // Head

String

Entity["Word", "Three"] // StandardForm

Three

Three (word)

Entity[Word, Three]

Wolfram Alpha Representations

Wolfram Alpha makes it easy to identify entities such as number “3” and it can automatically gener-

ate many more representations. For example....

WolframAlpha["3", {{"Input", 1}, "Content"}]

3

WolframAlpha["3", {{"NumberName", 1}, "Content"}]

three

WolframAlpha["3", {{"VisualRepresentation", 1}, "Content"}]



% // OutputForm

RawBoxes[StyleBox[FormBox[StyleBox["", FontFamily -> Courier, GrayLevel[0.5], 
 
     StripOnInput -> False], TraditionalForm], Output, FontFamily -> Times, 
 
   FontSize -> 14, ScriptLevel -> 0, Background -> None]]

WolframAlpha["3", {{"NumberLine", 1}, "Content"}]

2.5 3.0 3.5

WolframAlpha["3", {{"BaseConversions", 1}, "Content"}]

112
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WolframAlpha["3", {{"CharacterCode", 1}, "Content"}]

control-C

ASCII: 3 (hex: 03 | octal: 003 | binary: 00000011)

Unicode: U+0003 (decimal: 3)
(basic Latin)

WolframAlpha["3", {{"RomanNumerals", 1}, "Content"},

PodStates → {"RomanNumerals__Other historical numerals"}]

Roman III

Greek γ

Babylonian

Mayan

◆ Interpretation of “three” or 3

The Signified - Resource

The Wolfram Language provides a uniform mechanism, the Interpreter function, for specifying how

input of different types should be interpreted. Interpretations can involve either structural or seman-

tic  conversions.  The  strings  that  appear  in  $InterpreterTypes  are  the  possible  first  arguments  to

Interpreter.

$InterpreterTypes // Short

{3DS, ACO, AdministrativeDivision, 606, XYZ, ZIP, ZIPCode}

Interpretation
Generally speaking interpretation is closely related with the assignment of meaning to any expres-

sion or concept. But in computer science an interpreter is a computer program that executes instruc-

tions. In Wolfram Language the interpreter is involved in the evaluation of an expression. In R3DM

any  interpretation  is  directly  linked  to  the  signified,  the  semantics  of  any  information

resource.

The Interpreter Function

Interpreter["Number"]["3"]

(*returns the interpreted object only if applying test to it yields True;

otherwise it returns a Failure object.*)

3
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Interpreter["Number"] /@ {3, "3", {3}, "three"}

3, 3, {3}, Failure  Message: Enter a valid number.
Tag: InterpretationFailure



In  the  list  above  the  last  element  cannot  be  interpreted  as  a  number  but  according  to  Wolfram

language the semantic interpretation should be tried instead. Indeed if we try

Interpreter["SemanticNumber"]["three"]

3

But if we try the semantic interpretation for the word three in Greek (τρία)

Interpreter["SemanticNumber"]["τρία"]

Failure  Message: No number interpretation found. Try again.
Tag: InterpretationFailure



The Interpretation Function

How are we going to define our own interpretations ? Wolfram Language provides the interpretation

function for that purpose.

Interpretation[e,expr]

Represents an object that : 

◼ displays as e

◼ interpreted as the unevaluated form of expr if supplied as input

Interpretation of a unicode string e.g. “τρια” as 3

Interpretation["τρία", 3]

τρία

% // StandardForm

τρία

%% // InputForm

Interpretation["τρία", 3]

%%% // OutputForm

Interpretation[τρία, 3]

%%%% // Head

Interpretation

In  this  example,  the  output  of  the  Interpretation  function  is  not  a  string,  it  evaluates  to  the  expr

argument, i.e the integer number 3.

Copy and paste that output when building expressions to display as a string in its unevaluated form.
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When the custom expression is going to be evaluated the string will be interpreted as a number.

"τρία"

3

Head["τρία"]

Integer

Interpretation of a numeral e.g. “III” as 3

Interpretation["III", 3]

III

% // Head

Interpretation

%% // OutputForm

Interpretation[III, 3]

%%% // StandardForm

III

%%%% // InputForm

Interpretation["III", 3]

"III"

3

% // Head

Integer

String vs Interpretation

In order to demonstrate the difference we will input a string expression with the keyboard first as the

argument of the Head function

Head["III"]

String

then  we  will  copy  and  paste  the  output  of  the  previous  interpretation  expression,  i.e.  "III",  as  the

argument of the Head function

Head["III"]

Integer

Now let us try the same using the Interpreter function with a string argument type

Interpreter["String"]["III"]

III
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Interpreter["String"]["III"]

Failure  Message: Enter a valid value.
Tag: InterpretationFailure



Interpreter["Number"]["III"]

3

Evaluation of an expression with user-defined interpretations

3 * "τρία" - 2 * "III"

3

NumberQ /@ {"III", "τρία"}

{True, True}

◆ Storage of ‘3’

The Signifier - Realization

We will  end our discussion on the three-faceted abstraction mechanism that we use for number ‘3’

with  the  analysis  of  data  types  and  encoding,  decoding  mechanisms  to  store  various  representa-

tions of ‘3’. First we will compare atomic and complex data types. We can view data types as contain-

ers of a specific type of content.

The Container-Content Duality

Container (Form)

Integer Container (Data Type)

Head[3]

Integer

String Container (Data Type)

Head["3"]

String
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List Container (Data Type)

Head[{3}]

List

{

{Head[3], 3},

{Head["3"], "3"},

{Head[{3}], {3}}

} // TreeForm

List

List

Integer 3

List

String 3

List

List List

3

AtomQ /@ {Three, three, "three", 3, "3", {3}}

{True, True, True, True, True, False}

{True, True, False,}

{True, True, False, Null}

Content (Value)

Second,  in  Mathematica  the  content,  i.e.  the  value  can be  assigned to  a  variable  or  a  constant  in

two different ways.

Symbol replacement (variable)

Rule[a, 3]

a → 3

ReplaceAll[2 a - 3, a → 3]

3

Symbol name (constant)

a = 3

3

2 a - 3

3
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Encoding and Decoding of Container-Content
We continue our discussion with two different kinds of container - content. The first one is an Image

container  (symbol)  realized  in  Mathematica  as  a  raw  array  of  bytes,  and  the  second  is  a  Sound

container  (symbol)  realized in  Mathematica  as a  list  of  sound amplitude levels  samples.  Do notice

that both visual and aural representations have not been assigned any interpretation.

Image of 3 - Visual Representation

This is an image of number 3. It depicts the Western Arabic numeral of the digit ‘3’.

// FullForm

ImageRawArray"Byte",

ListListList[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], ⋯ 67⋯ , List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

⋯ 86⋯ , ⋯ 4⋯ , Rule ⋯ 1⋯ 

large output show less show more show all set size limit...

img3 = %;

img3 // Head

Image

8-bit Encoding

img3 // InputForm // Short

Image[RawArray[Byte, {{{255, 255, 255}, {255, 255, 255},

{<< 3 >>}, << 83 >>, {255, 255, 255}}, << 86 >>}], << 5 >>]

img3 // ByteCount

28907
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img3string = ToString[img3, StandardForm]

img3string // Head

String

img3string // FullForm // Short

"\!\(\*GraphicsBox[TagBox[RasterBox[RawArray[\"Byte\", List[Li"

\[Ellipsis] " 87], List[0, 87]]], Rule[ImageSize, Magnification[1]]]\)"

64-bit (double-precision real) Encoding

img3 // ImageType

Byte

Image[ImageData[img3, "Real"][[20 ;; 40, 30 ;; 45]]]

ImageData[img3, "Real"][[20 ;; 40, 30 ;; 45]][[1]]

{{0.00392157, 0.521569, 0.854902}, {0., 0.517647, 0.847059},

{0.00392157, 0.521569, 0.85098}, {0., 0.517647, 0.85098},

{0., 0.513725, 0.847059}, {0., 0.509804, 0.847059},

{0., 0.509804, 0.843137}, {0., 0.505882, 0.835294},

{0., 0.501961, 0.831373}, {0.00784314, 0.521569, 0.862745},

{0.0117647, 0.513725, 0.847059}, {0.0156863, 0.486275, 0.807843},

{0.0156863, 0.470588, 0.780392}, {0.0156863, 0.470588, 0.780392},

{0.0117647, 0.486275, 0.807843}, {0.00784314, 0.517647, 0.858824}}

Base64 String Encoding

img3b64 = ExportString[img3, {"Base64", "JPEG"}];

img3b64 // Short

/9j/4AAQSkZJRgABAQEASABIAAD/4QEkRXhpZgAATU0AKgAAAAgACwESAA

… cZooqiRpWk20UUxCeWKXy6KKCbCh

KkCUUUwHBaXFFFIpCiiiikM//9k=

Another image for number 3. This one has a connotation, because it  depicts three fingers which is

not a glyph for a numeral.
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Speech sound of 3 - Aural Representation

MP3 Encoding

snd3 = Import["https://ssl.gstatic.com/dictionary/static/sounds/de/0/three.mp3"]

0.65 s | 22050 Hz

EmitSound[snd3]

snd3 // Head

Sound

snd3 // FullForm

SoundSampledSoundList

ListList0.`, 0.`, 0.`, 0.`, 0.`, 0.`, 0.`, 0.`, ⋯ 14384⋯ ,

-0.00005928054451942444`, 0.000013921409845352173`,

0.000015564262866973877`, 0.00013080984354019165`,

0.0000990740954875946`, 0.00011708959937095642`,

0.0000665523111820221`, -0.00008933618664741516`, 22050

large output show less show more show all set size limit...

8bit Encoding for Sound Amplitude Levels

ListPlay[snd3[[1]][[1]][[1]][[4000 ;; 10000]],

SampleRate → 16000, SampleDepth → 8]

0.38 s | 16000 Hz
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snd3[[1]][[1]][[1]][[4000 ;; 10000]] // Short

{-0.0426587, -0.00663353, 5998, 0.146392}

WAV Encoding

Export["three.wav", snd3, "WAV"]

three.wav
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