
Towards a New Data Modelling

Architecture

By Athanassios I. Hatzis, PhD, R&D Software Engineer

(C) 17th of May 2015

In Part 2 of this series we introduced the Atomic Information Resource (AIR) data model of the

AtomicDB database management system. In this part we present a simple but extensive example

on various representations of number three using the poweful Mathematica functions and the

unique features of Mathematica notebooks. We relate these with the three-faceted abstraction

mechanism in R3DM and we discuss the principles and the architectural design of R3DM, a concep-

tual framework based on semiosis, in Part 4.

Part3: The number ‘3’ and The Three-Faceted

Abstraction Mechanism in R3DM

◆ Quick Introduction to Forms and In-formation

Etymology

Information origin

The origin of the word information reveals its use. Inform comes from the Latin verb informare,

which means to give form, or to form an idea of. Where form is the mold, the container, that is used

to give shape to molten, i.e. the content. At the time computer scientists were designing and con-

structing the first digital computer, at the same time digital information was given birth and shape.

Modern computers operate with memory chips and those are mere containers of storing sequences

of 0s and 1s.

Plerophoria origin

The above interpretation and use of the word information is typical of western culture way of think-

ing. Although it is convenvient to keep things in boxes, Eastern philosophers used to think differ-

ently. The ancient and modern Greek word for information is πληροφορία, which transliterates

(plērophoria) from πλήρης (plērēs) “fully” and φέρω (phorein) frequentative of (pherein) to carry-

through. This contrasting use and interpretation of the word plerophoria traces its roots back to

Socrates, Plato, and Aristotle’s theory of semiosis. In this regard every word plays the role of a

symbol, i.e. sign that can be interpreted to communicate information to the one decoding that spe-

cific type of sign. There is an intimate and inseperable connection of the signified, i.e. the concept

whose meaning the interpretant attempts to decode, with the signifier, i.e. sign’s physical form such

as the sound of a word. Every bit of digital information, i.e. 0 or 1 assimilates this triadic relationship.

Bits are symbols signified as true or false taking the form of input voltage (signifier). The infinite

combination of sequences of such symbols gives us the power to represent anything digitally. Their

meaning depends on how we interpret these sequences, as numbers, letters, sounds, color, or

anything else that can be encoded. The form of the signifier is not limited to that of a mere container

that stores a sequence of 0s and 1s. It is a fully functional level of abstraction connected to higher

and lower levels by applying recursively the theory of semiosis until we reach CPU’s binary level.

The Turing Machine
One-tape Turing machine according to Hopcroft and Ullman can be formally defined as a 7-tuple.

Elements of this tuple are members of three distinct sets. A non-empty set of tape alphabet sym-

bols, e.g. {0, 1}, a non-empty set of states, e.g. {A, B, C, HALT} and a set of state transitions e.g. {L,

R}. Turing machine reads the tape symbols and executes a sequence of instructions according to a

state table. Although this is not the space and time to adapt the theory of semiosis on the Turing

machine we can cleary see the role of the tape symbol as that of a sign, the signified instruction that

is executed according to the interpretation given by the state table, and the physical form it takes as

a printed text symbol on a white square of a paper tape. And of course you can apply the same logic

to the set of states and the set of transitions because these are symbols (signs) too; they can be

interpreted and realized in some other physical or non-physical form.

Functional Representation
Functional representation is the core operation of R3DM. Everything is represented as a function

that is mapping values from one domain to another. You may view functions, as transformations.

This is also how they operate in Wolfram Language. They transform expressions from one symbolic

form to another.

From bits to strings

In the following example we will see how we can apply the theory of semiosis so that it can naturally

follow from the etymology of the word plerophoria as it has been discussed above.

The Capacitor Discharge Function

A transistor and a capacitor are paired to create a memory cell, which represents a single bit of

data. When capacitor is discharged, i.e.the voltage is between zero and one Volts, we represent its

state with ‘0’ and when the voltage is between two and five Volts capacitor’ s state is represented

with ‘1’.

2 Towards a New Data Modelling Architecture - Part 3.nb

fCapacitor[x_] := 0 /; 0 < x < 1

fCapacitor[x_] := 1 /; 2 < x < 5

Plot[fCapacitor[x], {x, 0, 5}]

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Notice that numbers here in the intervals {0,1} and {2,5} are interpreted as voltage values. If we

want to be precise we will use the Quantity function and unit symbols in Mathematica.

Quantity[3, "Volt"]

3 V

And we will rewrite the function above to accept voltage values only.

fvCapacitor[v_?QuantityQ] := 0 /; 0 < QuantityMagnitude[v] < 1

fvCapacitor[v_?QuantityQ] := 1 /; 2 < QuantityMagnitude[v] < 5

fvCapacitor[3 V]

1

This is a simple but powerful example that demonstrates how a symbol, the number 3 in arabic

numeral form, has been transformed, interpreted as a voltage value through the function Quantity

and then how it was interpreted again as 0 or 1 through the capacitor discharge function. Let us see

now how 0 and 1 can be interpreted.

The Transistor Switch Function

For the transistor, 1 is interpreted as the READ operation and 0 is interpreted as the CHANGE

operation.

Transistor state = 1 -> Read Capacitor State

Transistor state = 0 -> Change Capacitor State

In Mathematica we can represent the above transformations with rules such as

{1 → READ, 0 → CHANGE};

Notice here that READ and CHANGE are symbols that have not been defined.

Or we can build another function that accepts only two values, 0 and 1 as the transistor state input

and outputs symbols that represent operations on the capacitor state.

fTransistor[state_] := READ /; state == 1

fTransistor[state_] := CHANGE /; state == 0

Towards a New Data Modelling Architecture - Part 3.nb 3

{fTransistor[1], fTransistor[0]}

{READ, CHANGE}

We may also say that READ is represented with 1 and CHANGE with 0

Logic Gate Representation

A different meaning is assigned here for the same values of 0 and 1. When state is 1 that is inter-

preted as the logic value True and when it is 0 that is interpreted as the logic value False.

{1 → True, 0 → False};

Or define a function as before

fMemory[state_] := True /; state ⩵ 1

fMemory[state_] := False /; state ⩵ 0

{fMemory[0], fMemory[1]}

{False, True}

In the opposite way we can represent True and False with 1 and 0

Boole is a Wolfram Language function that transforms symbols like True to integer 1 and False to

integer 0

{Boole[True], Boole[False]}

{1, 0}

We may also say that True is represented with 1 and False with 0

Dichotomus Representation

From the examples above it becomes clear that we can assign any interpretation to a dichotomus

type of variable which we assign values such as Male/Female, On/Off, Yes/No or others. In all the

cases the representation can be done with ‘0’ and ‘1’ symbols and the physical realization, i.e.

storage of data can also be done using the same two integers.

Memory Addressing and Interpretation

A memory container is defined by a starting memory address and the sequence of bits to read,

memLength. This is interpreted as a memObject.

isMemoryFunction[memAddress, memLength] → memObject

isMemoryFunction[memAddress, memLength] → memObject

For example a sequence of 8 bits, byte, that is encoded here with the string

StringLength["01000001"]

8

FromDigits["01000001", 2]

65

This byte is decoded in decimal system as the integer 65. And then according to ASCII coding

scheme, number 65 is decoded as the character “A”. This in turn is interpreted as the capital letter

“A” of the English Alphabet. Therefore this specific “A” can be represented with either an integer, or

4 Towards a New Data Modelling Architecture - Part 3.nb

a binary number, or a character.

Head["A"]

String

ToCharacterCode["A"][[1]]

65

Head[%]

Integer

BaseForm[65, 2]

10000012

Head[%]

Integer

Therefore in the example above we can distinguish the notion of the interpretation, e.g. “The

capital letter A of the English Alphabet” as an information resource, that remains the same for any

representation, i.e. the displayed form of it such as character “A”, the integer number 65, and the

binary number 10000012. There is a third notion of the realization, i.e. the type of container that

stores the value of the symbol for evaluation purposes. In the first case the character “A” is stored

into a string container but the other two representations are integer expressions. The binary form of

letter “A” affects printing but not evaluation as it is stored in the same way as number 65.

Now consider a 32bit representation of the number 65

StringLength["00000000000000000000000001000001"]

32

Head["00000000000000000000000001000001"]

String

FromDigits["00000000000000000000000001000001", 2]

65

This 32bit representation is stored and it is evaluated as a string of digits, not as a number. It is the

function FromDigits that converts the string to an integer number.

Building higher abstractions from primitives

Display Representation - VGA - compatible text mode

According to Wikipedia, “Text mode is a computer display mode in which content is internally repre-

sented on a computer screen in terms of characters rather than individual pixels”.

By far the most common text mode used in DOS environments, and initial Windows consoles, is the

default 80 columns by 25 rows, or 80x25, where each character is represented by a dot matrix (a

matrix of bits). The MDA (Monochrome Display Adapter) mode is using a 9x14 matrix of pixels. A

pixel is is the smallest controllable element of a picture represented on the screen. The total graph-

ics resolution of the MDA is calculated by multiplying the 80x25 matrix of characters with the 9x14

Towards a New Data Modelling Architecture - Part 3.nb 5

matrix of pixels which is 720x350 pixels.

Therefore, any display content can be represented on a 80x25 matrix of characters and the 80x25

matrix of characters is realized on a 720x350 matrix of pixels. The most primitive element here is

the pixel and we use them to build a higher abstraction layer which is made of characters. Then a

character can play the role of a fundamental unit that is used to compose words, sentences and

even textual graphics.

Content Representation - Strings, Words, Files and Folders and Drives

Apparently there is a chain of interpretations, representations and realizations that are built in a

consecutive order. This chain of semiosis reveals the mechanism that we can use to build

higher levels of abstraction. At each step the symbol that is used to link together the signifier with

the signified can become a fundamental unit, i.e. signifier to build the next level of abstraction. Thus

we can move in two directions, we can generalize or we can specialize. In the following example we

start with a generalization procedure, and we read from left to right.

Matrix of Bits (Signifier) isSymbolizedAs→Character (Sign) isSigni

fiedAs→Letter (Signified)

Sequence of Characters (Signifier) isSymbolizedAs→String (Sign) isSigni-

fiedAs→Word (Signified)

Sequence of Strings (Signifier) isSymbolizedAs→Sentence (Sign) isSigni

fiedAs→Statement (Signified)

Sequence of Sentences (Signifier) isSymbolizedAs→Text File (Sign) isSigni

fiedAs→Document (Signified)

Collection of Text Files (Signifier) isSymbolizedAs→Folder (Sign) isSigni

fiedAs→Folded cover for holding a collection of documents (Signified)

Collection of Folders (Signifier) isSymbolizedAs→Drive (Sign)

isSignifiedAs→Filing Cabinet (Signified)

The same example can be read backwards, i.e. from right to left if we change the linked

phrases

Collection of Folders (Realization) ←isRealizedAs Drive (Representation) ←isRepre-

sentedAs Filing Cabinet (Resource)

Collection of Text Files (Realization) ←isRealizedAs Folder (Representation) ←isRepre-

sentedAs Folded cover for holding a collection of documents (Resource)

Sequence of Sentences (Realization) ←isRealizedAs Text File (Representation) ←isRepre-

sentedAs Document (Resource)

Sequence of String (Realization) ←isRealizedAs Sentence (Representation) ←isRepre-

sentedAs Statement (Resource)

Sequence of Characters (Realization) ←isRealizedAs String (Representation) ←isRepre-

sentedAs Word (Resource)

Matrix of Bits (Realization) ←isRealizedAs Character (Representation) ←isRepre-

sentedAs Letter (Resource)

We have constructed a uniform generalization of the abstraction mechanism with a three-faceted

representation:

6 Towards a New Data Modelling Architecture - Part 3.nb

Signifier-Sign-Signified (S3) or Realization-Representation-Resource (R3) based on the theory of

semiosis.

Symbolic Expressions
Everything in Wolfram Language is represented with an expression, but every expression has a

head, i.e. Symbol that specifies its functionality and computability. The Basic Internal Architecture

tutorial explains how crucial is the role of Wolfram Language Symbol. Every expression is struc-

tured and parsed according to the placement of symbols.

For each Symbol, a pointer entry, i.e. a fixed computer memory address, in a central table of all

symbols is defined in a Wolfram Language session. Therefore each Symbol represents a pointer

that specifies an address in computer memory at which the internal representation of the actual

expression is found. This memory address contains also a pointer to a string giving the symbol’s

name, as well as other pointers, i.e. other Symbols, to evaluate subexpressions. The names of

symbols defined by the user in a session are placed in the Global` context. We can take a list of

these with the following command.

Names["Global`*"]

{CHANGE, fCapacitor, fMemory, fTransistor, fvCapacitor,

isMemoryFunction, memAddress, memLength, memObject, READ, state, v, x}

Built-in Wolfram language objects are in the System` context. Therefore we can issue the following

command to remove completely any previously user-defined symbols.

Remove["Global`*"]

Names["Global`*"]

{}

◆ Functional Representations of Number 3

The Sign - Representation

In this section we will investigate the various forms that a symbol related to number ‘3’ can take. In

R3DM this is the sign that is used to signify something at a higher level and at the same time

it is used to symbolize an internal representation, a realization.

Display Format
We start our journey into the re-presentations with the display format, i.e. something that is pre-

sented, appears on the screen with a certain form

BaseForm[3, 2]

112

Towards a New Data Modelling Architecture - Part 3.nb 7

"11""2" // Head

Integer

Number three is displayed here in a binary format, but internally it is realized, evaluated, as an

integer.

Cell Representation

Cell is the low-level representation of a cell inside a Wolfram System notebook. In the previous

examples the input of a symbol, such as Three, in a Wolfram System Notebook, is represented

underneath with the string “Three”. That string is encoded in another expression, i.e. a Cell expres-

sion, that prints its content, BoxData, with a specified format. We can select “Show Expression”

option from the menu Cell, or use the shortcut Shift+Ctrl+E to examine the underlying cell structure

of any expression that is displayed on Input or Output Notebook cells.

Cell[BoxData["Three"], "Input", FontSize → 24] // DisplayForm

Three

Three // Head

ExpressionCell

Box Representation

The following low-level box constructs represents a textual and graphical display form of three to the

power of three (33). These boxes are usually arranged in a nested collection that correspond to

objects that are to be placed at definite relative positions in two dimensions, see “Representing

Textual Forms by Boxes”,

SuperscriptBox of 3 to the 3 ≅ 33

SuperscriptBox[3, 3] // StandardForm

SuperscriptBox[3, 3]

% // Head

SuperscriptBox

Here StandardForm refers literraly to the output of the Input Cell Expression. But this specific cell

expression cannot be interpreted or formatted further. Let us examine the structure of the expres-

sion underneath.

8 Towards a New Data Modelling Architecture - Part 3.nb

Cell[

BoxData[

RowBox[

{"SuperscriptBox", "[", RowBox[{"3", ",", "3"}], "]"}

]

], "Output"

] // DisplayForm

SuperscriptBox[3, 3]

% // Head

Cell

But the RawBoxes construct on the above SuperscriptBox expression prints the low-level Superscrip-

tBox construct in explicit two-dimensional form. Nevertheless RawBoxes IS NOT a wrapper, it

affects both display and evaluation.

SuperscriptBox[3, 3] // RawBoxes

33

% // Head

RawBoxes

The same result is printed using the DisplayForm

SuperscriptBox[3, 3] // DisplayForm

33

% // Head

SuperscriptBox

Cell[BoxData[SuperscriptBox["3", "3"]], "Input"] // DisplayForm

33

% // Head

Cell

%% // StandardForm

Cell[BoxData[SuperscriptBox[3, 3]], Input]

Display Wrappers

Notice that in the evaluation of the expressions above, FullForm, InputForm, StandardForm, Display-

Form act as “wrappers”. They affect display but not evaluation.

Input and Output Representations

Expressions in Wolfram language can be displayed with many formats depending on whether they

are used for input or output. Normally the naming of these display formats such as InputForm or

Towards a New Data Modelling Architecture - Part 3.nb 9

OutputForm are paired with the input and output cells that are used for entering expressions and

displaying results, but they can be interchangeable. There are many ways to enter (input of) an

expression, e.g. from keyboard, from a notation palette, from cutting and paste other Cell expres-

sions. Similarly there are many ways to display a result, i.e. what an expression returns as output.

For example, in the following input expression of 3 , a two-dimensional form, we instruct the

kernel to output the result using the InputForm format. Notice that this is not necessarily the format

we use to enter an expression. In fact input expressions can take any form, including the InputForm

of course.

3 // InputForm

Sqrt[3]

Or if we reverse the display formats, then we can use one-dimensional form for the input of the

expression, i.e. use the keyboard to enter Sqrt[3] and request a standard form for the output of the

expression :

Sqrt[3] // StandardForm

3

StandardForm is the default format that is used for the output of expressions

Now, use the keyboard input form, Sqrt[3], again and format the output in a more traditional mathe-

matical notation form :

Sqrt[3] // TraditionalForm

3

It is important at this point to understand that the various forms, that are used for input and output of

expressions, do not affect the evaluation of the expression. This is because evaluation depends

always on the internal representation. FullForm, InputForm, StandardForm, DisplayForm act as

display wrappers.

2D Low-Level Representation

We continue our discussion with more examples on the 2D display format of expressions.

Superscript of 3 to the 3 - 33

The following expression represents a 2D object that is displayed with a proper superscript format.

Notice that this expression is not interpreted as Power[3,3]. It is only formatted as 33 in Standard-

Form and DisplayForm

Superscript[3, 3] // DisplayForm

33

If we copy and paste the previous output (33) into an input expression we will have

33 // Defer // FullForm

Defer[Superscript[3, 3]]

10 Towards a New Data Modelling Architecture - Part 3.nb

But, entering superscript notation directly, through x Ctrl + ^ y will be interpreted as Power[x, y] :

33 // Defer // FullForm

Defer[Power[3, 3]]

Supersciptbox is the low-level representation of Superscript.

SuperscriptBox["3", "3"] // DisplayForm

33

If we examine the previous output expression (33) we see that it is evaluated as a Power expression

33 // Defer // FullForm

Defer[Power[3, 3]]

and If we use a more generic low-level representation using the TemplateBox

TemplateBox[{"3", "3"}, "Superscript"] // RawBoxes

33

this time the full form of this output is a Superscipt expression

33 // Defer // FullForm

Defer[Superscript[3, 3]]

and then to print low - level boxes we can use an expression such as

Cell[BoxData[TemplateBox[{"3", "3"}, "Superscript"]], "Output"] // DisplayForm

33

But in this case the last output (33) is internally represented as

33 // Defer // FullForm

Defer[ExpressionCell[Superscript[3, 3], "Output"]]

With this example we see how differently the kernel evaluates 33 according to its internal

representation

Power of 3 to the 3 - 33

The following expression is evaluated and the integer 27 is returned as the output result.

33

27

We use the unevaluated form of the expression above to examine other display formats

Unevaluated33 // FullForm

Unevaluated[Power[3, 3]]

Unevaluated33 // InputForm

Unevaluated[3^3]

Unevaluated33 // StandardForm

Unevaluated33

Towards a New Data Modelling Architecture - Part 3.nb 11

Unevaluated33 // DisplayForm

Unevaluated33

Square root of 3 - 3
1
2 

The symbol “Sqrt” is intepreted as the square root. We can enter an expression such as Sqrt[3] with

this input format and the Wolfram Language evaluates it and returns the result with the default

output format that prints a root symbol instead of the string “Sqrt”. Both the input and output format

of Sqrt[3] can be displayed by entering cell expressions.

Sqrt[3]

3

The following cell expressions underneath are visual representations of the above input and output

expressions, notice that a special SqrtBox is used to display the root symbol on a two-dimensional

output format.

Cell[

BoxData[

RowBox[{"Sqrt", "[", "3", "]"}]], "Input"] // DisplayForm

Sqrt[3]

Cell[

BoxData[

SqrtBox["3"]], "Output"] // DisplayForm

3

% // InputForm

Cell[BoxData[\(\@3\)], "Output"]

%% // StandardForm

Cell[BoxData[SqrtBox[3]], Output]

%%% // FullForm

Cell[BoxData[SqrtBox["3"]], "Output"]

Let us print another cell expression of Sqrt[3] with a font style similar to that used in a SubSection

and a Bold Font.

Cell[

BoxData[

SqrtBox["3"]], "Subsection", FontWeight → "Bold"] // DisplayForm

3

Other display formats for the square root of 3

Sqrt[3]

3

12 Towards a New Data Modelling Architecture - Part 3.nb

% // FullForm

Power[3, Rational[1, 2]]

% // InputForm

Sqrt[3]

% // StandardForm

3

% // TraditionalForm

3

Multiplication 3x3

3 × 3

9

Unevaluated[3 × 3] // FullForm

Unevaluated[Times[3, 3]]

Unevaluated[3 × 3] // InputForm

Unevaluated[3*3]

Cell[BoxData[RowBox[{3, " ", 3}]]] // DisplayForm

3 × 3

% // FullForm

Cell[BoxData[RowBox[List[3, " ", 3]]]]

%% // InputForm

Cell[BoxData[RowBox[{3, " ", 3}]]]

%%% // StandardForm

Cell[BoxData[RowBox[{3, , 3}]]]

Internal Representation
Internal representation is the full functional form of an expression. Consider the square root of three,

it can be displayed with the standard square root symbol such as

3 // FullForm

Power[3, Rational[1, 2]]

But when we ask to see the full functional form, the kernel returns a different expression with other

symbols that represent functions such as the Power and Rational.

Towards a New Data Modelling Architecture - Part 3.nb 13

3 // Head

Power

We can display it as a tree to visualise the structure of the expression with Symbols as Heads and

Atoms as leaf nodes. This is also a nice visualization of the internal representation that is used

inside the Wolfram kernel for evaluation purposes, free of any display formats, textual styles, graph-

ics or 2D notation format.

Hold[Power[3, Rational[1, 2]]] // TreeForm

Hold

Power

3 Rational

1 2

String vs Symbol Representation
Let us take the string form first and apply the Head function

"Three"

Three

% // Head

String

Use a symbol now

Three

Three

% // Head

Symbol

Notice that in both cases, the output (Three) looks the same, but it is not internally. In the first case it

is a string, in the second it is a symbol. The input of an expression such as Three, or three in a

notebook cell is automatically recognised by Wolfram kernel as a symbol. The “Symbol” Function

refers to a symbol with the specified string name and returns the Symbol with that name. The two

14 Towards a New Data Modelling Architecture - Part 3.nb

strings in the following list are symbolized as Three and three

Symbol /@ {"Three", "three"}

{Three, three}

Head /@ %

{Symbol, Symbol}

String vs Numeric Representation
How about entering the following list

{"3", "3."}

{3, 3.}

Notice that the output looks like a list of two numbers an integer and a decimal one but it is evalu-

ated as a list of two strings

Head /@ %

{String, String}

While in the following one

{3, 3.}

{3, 3.}

Head /@ %

{Integer, Real}

Entity Representation
Wolfram researchers have implemented a different display format for representing entities of any

kind including, characters, and words. This entity representation is analogous to the signified facet

of the sign (symbol) in R3DM. The displayed form of this symbol, an orange box, signifies that the

content has been assigned a specific meaning. Based on this meaning the kernel can evaluate the

entity, i.e. the content is signified.

Entity["Character", 51] // StandardForm

3

3 (character)

3

3 (character) // Head

Entity

Towards a New Data Modelling Architecture - Part 3.nb 15

3 (character) // FullForm

Entity["Character", 51]

EntityValue 3 (character) , "Name"

3

% // Head

String

Entity["Word", "Three"] // StandardForm

Three

Three (word)

Entity[Word, Three]

Wolfram Alpha Representations

Wolfram Alpha makes it easy to identify entities such as number “3” and it can automatically gener-

ate many more representations. For example....

WolframAlpha["3", {{"Input", 1}, "Content"}]

3

WolframAlpha["3", {{"NumberName", 1}, "Content"}]

three

WolframAlpha["3", {{"VisualRepresentation", 1}, "Content"}]



% // OutputForm

RawBoxes[StyleBox[FormBox[StyleBox["", FontFamily -> Courier, GrayLevel[0.5],

 StripOnInput -> False], TraditionalForm], Output, FontFamily -> Times,

 FontSize -> 14, ScriptLevel -> 0, Background -> None]]

WolframAlpha["3", {{"NumberLine", 1}, "Content"}]

2.5 3.0 3.5

WolframAlpha["3", {{"BaseConversions", 1}, "Content"}]

112

16 Towards a New Data Modelling Architecture - Part 3.nb

WolframAlpha["3", {{"CharacterCode", 1}, "Content"}]

control-C

ASCII: 3 (hex: 03 | octal: 003 | binary: 00000011)

Unicode: U+0003 (decimal: 3)
(basic Latin)

WolframAlpha["3", {{"RomanNumerals", 1}, "Content"},

PodStates → {"RomanNumerals__Other historical numerals"}]

Roman III

Greek γ

Babylonian

Mayan

◆ Interpretation of “three” or 3

The Signified - Resource

The Wolfram Language provides a uniform mechanism, the Interpreter function, for specifying how

input of different types should be interpreted. Interpretations can involve either structural or seman-

tic conversions. The strings that appear in $InterpreterTypes are the possible first arguments to

Interpreter.

$InterpreterTypes // Short

{3DS, ACO, AdministrativeDivision, 606, XYZ, ZIP, ZIPCode}

Interpretation
Generally speaking interpretation is closely related with the assignment of meaning to any expres-

sion or concept. But in computer science an interpreter is a computer program that executes instruc-

tions. In Wolfram Language the interpreter is involved in the evaluation of an expression. In R3DM

any interpretation is directly linked to the signified, the semantics of any information

resource.

The Interpreter Function

Interpreter["Number"]["3"]

(*returns the interpreted object only if applying test to it yields True;

otherwise it returns a Failure object.*)

3

Towards a New Data Modelling Architecture - Part 3.nb 17

Interpreter["Number"] /@ {3, "3", {3}, "three"}

3, 3, {3}, Failure  Message: Enter a valid number.
Tag: InterpretationFailure



In the list above the last element cannot be interpreted as a number but according to Wolfram

language the semantic interpretation should be tried instead. Indeed if we try

Interpreter["SemanticNumber"]["three"]

3

But if we try the semantic interpretation for the word three in Greek (τρία)

Interpreter["SemanticNumber"]["τρία"]

Failure  Message: No number interpretation found. Try again.
Tag: InterpretationFailure



The Interpretation Function

How are we going to define our own interpretations ? Wolfram Language provides the interpretation

function for that purpose.

Interpretation[e,expr]

Represents an object that :

◼ displays as e

◼ interpreted as the unevaluated form of expr if supplied as input

Interpretation of a unicode string e.g. “τρια” as 3

Interpretation["τρία", 3]

τρία

% // StandardForm

τρία

%% // InputForm

Interpretation["τρία", 3]

%%% // OutputForm

Interpretation[τρία, 3]

%%%% // Head

Interpretation

In this example, the output of the Interpretation function is not a string, it evaluates to the expr

argument, i.e the integer number 3.

Copy and paste that output when building expressions to display as a string in its unevaluated form.

18 Towards a New Data Modelling Architecture - Part 3.nb

When the custom expression is going to be evaluated the string will be interpreted as a number.

"τρία"

3

Head["τρία"]

Integer

Interpretation of a numeral e.g. “III” as 3

Interpretation["III", 3]

III

% // Head

Interpretation

%% // OutputForm

Interpretation[III, 3]

%%% // StandardForm

III

%%%% // InputForm

Interpretation["III", 3]

"III"

3

% // Head

Integer

String vs Interpretation

In order to demonstrate the difference we will input a string expression with the keyboard first as the

argument of the Head function

Head["III"]

String

then we will copy and paste the output of the previous interpretation expression, i.e. "III", as the

argument of the Head function

Head["III"]

Integer

Now let us try the same using the Interpreter function with a string argument type

Interpreter["String"]["III"]

III

Towards a New Data Modelling Architecture - Part 3.nb 19

Interpreter["String"]["III"]

Failure  Message: Enter a valid value.
Tag: InterpretationFailure



Interpreter["Number"]["III"]

3

Evaluation of an expression with user-defined interpretations

3 * "τρία" - 2 * "III"

3

NumberQ /@ {"III", "τρία"}

{True, True}

◆ Storage of ‘3’

The Signifier - Realization

We will end our discussion on the three-faceted abstraction mechanism that we use for number ‘3’

with the analysis of data types and encoding, decoding mechanisms to store various representa-

tions of ‘3’. First we will compare atomic and complex data types. We can view data types as contain-

ers of a specific type of content.

The Container-Content Duality

Container (Form)

Integer Container (Data Type)

Head[3]

Integer

String Container (Data Type)

Head["3"]

String

20 Towards a New Data Modelling Architecture - Part 3.nb

List Container (Data Type)

Head[{3}]

List

{

{Head[3], 3},

{Head["3"], "3"},

{Head[{3}], {3}}

} // TreeForm

List

List

Integer 3

List

String 3

List

List List

3

AtomQ /@ {Three, three, "three", 3, "3", {3}}

{True, True, True, True, True, False}

{True, True, False,}

{True, True, False, Null}

Content (Value)

Second, in Mathematica the content, i.e. the value can be assigned to a variable or a constant in

two different ways.

Symbol replacement (variable)

Rule[a, 3]

a → 3

ReplaceAll[2 a - 3, a → 3]

3

Symbol name (constant)

a = 3

3

2 a - 3

3

Towards a New Data Modelling Architecture - Part 3.nb 21

Encoding and Decoding of Container-Content
We continue our discussion with two different kinds of container - content. The first one is an Image

container (symbol) realized in Mathematica as a raw array of bytes, and the second is a Sound

container (symbol) realized in Mathematica as a list of sound amplitude levels samples. Do notice

that both visual and aural representations have not been assigned any interpretation.

Image of 3 - Visual Representation

This is an image of number 3. It depicts the Western Arabic numeral of the digit ‘3’.

// FullForm

ImageRawArray"Byte",

ListListList[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], ⋯ 67⋯ , List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

List[255, 255, 255], List[255, 255, 255], List[255, 255, 255],

⋯ 86⋯ , ⋯ 4⋯ , Rule ⋯ 1⋯ 

large output show less show more show all set size limit...

img3 = %;

img3 // Head

Image

8-bit Encoding

img3 // InputForm // Short

Image[RawArray[Byte, {{{255, 255, 255}, {255, 255, 255},

{<< 3 >>}, << 83 >>, {255, 255, 255}}, << 86 >>}], << 5 >>]

img3 // ByteCount

28907

22 Towards a New Data Modelling Architecture - Part 3.nb

img3string = ToString[img3, StandardForm]

img3string // Head

String

img3string // FullForm // Short

"\!\(*GraphicsBox[TagBox[RasterBox[RawArray[\"Byte\", List[Li"

\[Ellipsis] " 87], List[0, 87]]], Rule[ImageSize, Magnification[1]]]\)"

64-bit (double-precision real) Encoding

img3 // ImageType

Byte

Image[ImageData[img3, "Real"][[20 ;; 40, 30 ;; 45]]]

ImageData[img3, "Real"][[20 ;; 40, 30 ;; 45]][[1]]

{{0.00392157, 0.521569, 0.854902}, {0., 0.517647, 0.847059},

{0.00392157, 0.521569, 0.85098}, {0., 0.517647, 0.85098},

{0., 0.513725, 0.847059}, {0., 0.509804, 0.847059},

{0., 0.509804, 0.843137}, {0., 0.505882, 0.835294},

{0., 0.501961, 0.831373}, {0.00784314, 0.521569, 0.862745},

{0.0117647, 0.513725, 0.847059}, {0.0156863, 0.486275, 0.807843},

{0.0156863, 0.470588, 0.780392}, {0.0156863, 0.470588, 0.780392},

{0.0117647, 0.486275, 0.807843}, {0.00784314, 0.517647, 0.858824}}

Base64 String Encoding

img3b64 = ExportString[img3, {"Base64", "JPEG"}];

img3b64 // Short

/9j/4AAQSkZJRgABAQEASABIAAD/4QEkRXhpZgAATU0AKgAAAAgACwESAA

… cZooqiRpWk20UUxCeWKXy6KKCbCh

KkCUUUwHBaXFFFIpCiiiikM//9k=

Another image for number 3. This one has a connotation, because it depicts three fingers which is

not a glyph for a numeral.

Towards a New Data Modelling Architecture - Part 3.nb 23

Speech sound of 3 - Aural Representation

MP3 Encoding

snd3 = Import["https://ssl.gstatic.com/dictionary/static/sounds/de/0/three.mp3"]

0.65 s | 22050 Hz

EmitSound[snd3]

snd3 // Head

Sound

snd3 // FullForm

SoundSampledSoundList

ListList0.`, 0.`, 0.`, 0.`, 0.`, 0.`, 0.`, 0.`, ⋯ 14384⋯ ,

-0.00005928054451942444`, 0.000013921409845352173`,

0.000015564262866973877`, 0.00013080984354019165`,

0.0000990740954875946`, 0.00011708959937095642`,

0.0000665523111820221`, -0.00008933618664741516`, 22050

large output show less show more show all set size limit...

8bit Encoding for Sound Amplitude Levels

ListPlay[snd3[[1]][[1]][[1]][[4000 ;; 10000]],

SampleRate → 16000, SampleDepth → 8]

0.38 s | 16000 Hz

24 Towards a New Data Modelling Architecture - Part 3.nb

snd3[[1]][[1]][[1]][[4000 ;; 10000]] // Short

{-0.0426587, -0.00663353, 5998, 0.146392}

WAV Encoding

Export["three.wav", snd3, "WAV"]

three.wav

Towards a New Data Modelling Architecture - Part 3.nb 25

