White Paper

TriaClick Architectural Overview

By Athanassios 1. Hatzis
March, 2019

Store Porsche 993 GT2
VIN : WP0ZZZ99ZT5392124

Think about a Porsche

RESOURCE REA_LIZ_A_TION
Signified Signifier
Concepts i Data

(Aristotle - Noeemata) (Aristotle - Pragmata)
Interpreted

yo ed

Manage a symbolic representation
e.g. a key reference with a record ID

~ RID:#126:9

REPRESENTATION
Sign Vehicle
Symbols
(Aristotle - Foneemata)

R3DM/S3DM Semiotic Triangle
{C) 27 March 2017 - Athanassios I. Hatzis

http://healis.eu/triaclick TriaClick Architectural Overview - 1/12

White Paper

Table of Contents

AT A GLANCE......eeiteieeteet ettt ettt et ettt eh e bt e b e s st e bt et e e bt et e ea b e e h e e bt et e e bt et e et e eh e et e e eab e e e abeeeabeeeareeeares 3
OVEIVIEW Of TAIZEL....ceutiitieeiieeiteete ettt ettt st e et e et e s bt e st e e bt e s s be s bt e sabeesbeesabeeaseesabee bt esabesseesabeesasaeeenasaeean 3
Data Modeling at the Heart of Data ANAlYSisS........cccceeruerriiririeniiienieeeteeteseeeetese ettt sae e 3
Components Of TriaCliCk FTamMEWOTK........cccecuiiiiiriiieiieeieeieeeieesteeteesieesteesreessseesseesseeesseesssessseesssessnsseesssssess 3
TTIaCHICK HYPEIGTAPRS.ciiiiiieiieieiieeeiteeeiteeetee ettt st e et e e st e e s et e e s baeesstaeesssaessssaessseesssaeessnnssssaeessnsnnssees 5
Quick comparison with graph network data Models............cceeeeiiiiiiiiniieieieecee e e 6
TriaClick User ENVITONIMENL.......ccc.tiiiiiiiiiieiteeteetee ettt e ettt e st e it e eeessse e st e e saeesasessseesabeesamseeesanseeesanneeesanseeas 7
TTIACTHCK SYSTRIMIS. ...ecutiiiiieiiiiieeiteerte ettt et e st et e st e e steessbeesaaessbeeseessbeessaesasaenseessseesaesnsaeseessseensseessnnsees 7
TTIACHCK HYPEISIIUCIUTES.cccuvieieieeeiieeeiteeecteeesteeesteeessteeesaeeessaeeessseeesssaesssseesssseessseesssseesssseessseesssssnssneeesns 8
TTIACHICK ASSOCIALIVESEL....cutetieteriterteeteeteeteet ettt ettt et e st s e st e eat e s bt et e s st e bt st e satesbeeabesaeenseeasesateseenseenns 8
TriaClick Chain Query Language (CQL).......ciiciiieiieieiieeeieeenieeesieeesteeesteeessaeessseeesssseesssessssssseesssssssseeesenns 8
Interactive Data EXPIOTatiON........cieecuiiiiiiiiiiieeeieeeie et eete st e s et e s saeessaeessateessaseessaeessssessseassssseessseesnsseeennns 10
LOGICAL INFETEIICE.eeveeiieiieieeiee ettt ettt st s et s et e e b e st e se e s e e st esaeensesaeenseensaessseesnseesasens 10
TriaClick as a State MaChiNe.cc.eivuerieriiiiee ettt ettt st sa et s e s bt essaeesenneenas 11
EDILOGUE. ...ttt ettt s e et e e st e s bt e et e e bt e e st e e te e et e e bt e et b e e bee et e e baeesbe e saeenteeaaeeenraees 11

http://healis.eu/triaclick TriaClick Architectural Overview - 2/ 12

White Paper

At A Glance

TriaClick is a specific implementation of TRIADB multi-perspective database management framework on top of
MariaDB and ClickHouse DBMS. It is founded on the principles of R3DM/S3DM associative, semiotic,
hypergraph technology. This paper addresses specifications of this technology, offers an overview of the
software/database engineering problem we try to solve and highlights the key differentiating factors from other
solutions. The target audience for this paper consists of IT professionals, preferably with technical expertise in
DBMS and data analytics software.

Overview of Target

From TRIADB engineering point of view, storage/graph engines, data modeling, ACID/BASE operations, query
language, clustering, migration, integration and eventually analytics should be managed independently. These
have to be switchable components in a standardized DBMS architecture. And this is the main reason we selected
python as the TRIADB programming language. Python is a glue language and therefore it is relatively easy to
build a generic API at a high level that communicates with many different components and unifies them as a
solid, easy to use and efficient database management framework.

From the end-user (non technical user) point of view, results should be taken intuitively, self-serviced, with sub-
second response in a GUI environment, no matter what API, query language you have underneath. Even the
Velocity, Volume and other Vs of data should not be a concern for the end user. And here lies the second reason
we chose Python and Jupyter notebooks for the graphical environment. That style of programming allows to
built interactively and dynamically a graphical user interface and to change its behaviour and appearence using
python commands.

Data Modeling at the Heart of Data Analysis

It is not a coincidence that the roots of this project date back to 2009, when the NoSQL movement started. At
that time the author also started his research and thorough investigation of existing data models. Data modeling
is at the heart of data analysis process. At a lower level you have to deal with storage, extraction, transformation
and loading. At a higher level you manage integration, correlation, aggregation, exploratory data analysis and
descriptive statistics. TriaClick extends in both directions to embrace and unify physical, logical and conceptual
database layers in a unique and profound way.

Components of TriaClick Framework

From an abstract point of view TriaClick software components correspond to Computer Science assertion
(ABox) and terminological (TBox) components. The main difference from other systems and data
modeling specifications is that these components are completely separable. In the current implementation

http://healis.eu/triaclick TriaClick Architectural Overview - 3/ 12

http://healis.eu/r3dm_project/post000005/
http://healis.eu/triadb/

White Paper

MariaDB stores data dictionary information, i.e. TriaClick metadata objects and ClickHouse data storage
engines are used for processing and querying data, i.e. TriaClick instances.

But most important is that representational forms of these two components are interrelated and logically
connected through the cornerstone of our technology, which is semiotic in nature. TriaClick framework is
based on the theory of the semiotic triangle also known as the triangle of meaning or the triangle of reference. In
TriaClick everything is represented and stored with a 3D numerical key vector.

For example the key (2, 100, 9) represents the attribute “part name” (9) of the “Part” Entity, in one of the
models, “SupplierPartCatalog” (100), that exists under TriaClick data modeling system (2). In other words key
dimensions are used as hierarchical containers to capture information about the hierarchical relationships in data
structures that are inherent in nature (Fig. 1). The modeling system has many models. One model has many
entities and one entity has many attributes.

In[18]: dmf.get(2, 100, None, what='metadata', out='dataframe')

outl[10]:

dimd dim3 dim2 cname alias ntype vtype counter
o] 2 lee @ SupplierPartCatalog ALL 00121 860l DM NaN 16
1 2 lee 1 SupplierPartCatalog_ALL SPC_ALL ENT NaN 4]
2 2 lo@ 2 prtio prtid ATTR UIntlé 4]
3 2 106 3 supID supID ATTR UIntlé 4]
4 2 1ee 4 catChk catChk ATTR String 0]
5 2 lee 5 catDate catDate ATTR Date 4]
6 2 1ee 6 catPrice catPrice ATTR Float32 [}
7 2 1ee 7 catTotal catTotal ATTR UINtlé [}
8 2 1ee 8 prtColor prtColor ATTR String 4]
9 2 loe 9 priName prtName ATTR String 4]
10 2 lee 10 priUnit prtUnit ATTR String 4]
11 2 lee 11 prtWeight prtWeight ATTR Float32 4]
12 2 lee 12 supAddress supAddress ATTR String 9]
13 2 1ee 13 supCity supCity ATTR String 4]
14 2 loe 14 supCountry supCountry ATTR String 4]
15 2 lo@ 15 supName supName ATTR String 4]
16 2 106 16 supStatus supStatus ATTR UInts Q

Figure 1: Data Model Metadata

In the same example each distinct value of the “part name” attribute is also represented with a key, e.g. :
(100, 9, 4) is a specific “Fire Hydrant Cap” instance with model, attribute and value dimensions respectively
(Fig. 2).

In[22]: HyperCollection(datmodel, pattern='prtName').cql.Over(value=True, sel=True, pos=True).Where('sel=1').Execute(index="dim3, dim2, diml').Result
Out[22]:
priName sel pos

dim3 dim2 diml
| 9 1 7 Segment Display
Acme Widget Washer
Anti-Gravity Turbine Generator
Fire Hydrant Cap
I Brake for Crop Circles Sticker
Left Handed Bacon Stretcher Cover
Smoke Shifter End

P T N S FUR Y
[N = T T = R S R S
[= = T = R = S R

Figure 2: Distinct values of an attribute, i.e. items of a HyperAtom collection

http://healis.eu/triaclick TriaClick Architectural Overview - 4/ 12

TriaClick Hypergraphs
TriaClick is developed in Python and combines two database interfaces, PonyOrm and Marilyn ClickHouse

Python Driver. On top of these interfaces there is the DataManagementFramework class that implements an
object-oriented console API between databases and TriaClick associative semiotic hypergraph data management

framework.

Two hypergraph systems are created; one that handles TriaClick metadata objects; and another for TriaClick
instances. In analogy to the components of TriaClick these are also distinct and completely separable

hypergraphs.
Optional Address Association
Optional - Weight Association
scity
- pmagnitude
scountry - } [
[| u
: ‘1 city saddress &
=] ma ude
country : .}
city of address mag"f de :unl:
country of address of s ME 3
H : w
M ;. .
A /

e
wlall =

is supplier id

namé of statys of

has supplier id

hithia stajtus has part id : -j
[|
o= = o peolor
- _i [j [|
® - [|
5 sstatus —
price of
inspegfion duantity of
- e of
= R
catchk o |
=
quahtity catprice
= | -
=
catdate - 4
catqnt

Figure 3: Supplier-Catalog-Part hypergraph data model with bidirectional links

http://healis.eu/triaclick TriaClick Architectural Overview - 5/ 12

|
{
-

weigh
wetak agnitude P
P nitude of

ight unit
colog of i
namje of

ag|

- g
L
B

White Paper

=
1

ni

itude

White Paper

I. In data dictionary hypergraph (Fig. 3) we have:

a) HyperEdges to represent data model entities, i.e. things with distinct and independent existence and
data resources, e.g. TSV/CSV flat files.

b) HyperNodes to represent data model attributes, i.e. properties of entities and fields of a data
resource, e.g. columns of a file/table.

¢) HyperLinks to represent bidirectional edges with a Many-To-Many directed relationship from tail
nodes (e.g. Entities) to head nodes (e.g. Attributes).

II. In associative data hypergraph (Fig. 4) we have:

a) HyperBonds to represent instances of associations, i.e. the equivalent data sturucture of a data record
(relational tuple).

b) HyperAtoms to represent instances of data items (e.g. data values).

¢) HyperLinks to represent bidirectional edges with a Many-To-Many directed relationship from tail
nodes (i.e. HyperBonds) to head nodes (i.e. HyperAtoms).

@ +Bong
[I
() HA_UINT
@ AT
@ e oAy

—HLink

idget her 2014-12-20 00:00:00
N
1084
1081
993

NOTTINGHAM

2014-03-03 00:00:00

ILLINOIS

Silver

. . 205 Alien Aircraft Inc.

Acme Widget Suppliers

Figure 4: Part item (Acme Widget Washer) with three Catalog entries (grey hyperbonds), two for one Supplier
(Acme Widget Suppliers) and one for another Supplier (Alien Aircraft)

Quick comparison with graph network data models

Here is a rundown of some of the most important similarities between TriaClick and other Graph Database
systems:

* Hypergraph is a generalization of graph network in which an edge can join any number of vertices

http://healis.eu/triaclick TriaClick Architectural Overview - 6 /12

White Paper

* Bidirectional links are similar to edges of a property graph network
* HyperBond/HyperEdge and HyperAtom/HyperNode are similar to RDF subject and object respectively

* Nodes of the graph are represented with logical identifiers (3D numerical keys). Each node knows its
type and is directly linked to its neighbours.

The key difference is that in our associative, semiotic, hypergraph technology the construction of queries or
paths for traversal and filtering of data are not dependent on labeling of data, e.g. labeled nodes/edges.

TriaClick User Environment

The user environment in TriaClick plays the equivalent role of a namespace and a database in other DBMS. Each
user of TriaClick has a corresponding database user and default database in both MariaDB and ClickHouse in
which he can store data. Since everything in TriaClick is handled with numerical vectors as identifiers (see Fig.1
and Fig.2), name collisions are avoided and construction of queries and other execution routines can be
generalized for any user in any data model, database because they are not dependent on namespace. From
that perspective TriaClick can be considered as a generic database programmable environment.

TriaClick Systems

In this environment DataModel and DataResource modules are built on top of DataManagementFramework.
The first implements an interface to construct data models with entities and attributes, to create ClickHouse
MergeTree table engines for TriaClick hypergraph and to fetch back objects by specifying name patterns or
numerical key vectors. The second implements a similar interface to manage data resources. Each data resource
can be a data set of many related items, e.g. TSV/CSV flat files, hypergraph files, data model files etc.

In[16]: dmf = DataResource(mysql_conn, clickhouse_conn, name='void', alias='wvoid')
In[17]: dmf.get({what="overview', out="dataframe', dindex="dim4, dim3, dimz2'})
Out[17]:
cname alias ntype vitype counter
dim4 dim3 dim2
1 2] o] Data Resources System DRS DRS NaM 3
121 @ TRIADB Data Models TRIADB_DM D5 NaM 1
242 © Network Hypergraphs HGraph DS NaM a
363 @ Supplier_Part_Catalog Combined SPC_ALL DS NaM 16
2 2] (5] Data Models System DMS DMS NaM 1
laa o SupplierPartCatalog_ALL Model SPC_ALL DM DM MNaM 1s
3 2] @ Hyper Links System HLS HLS NaM 2
TT7 (5] HyperEdge /HyperMNode HE_HN HLT NaM 3@
154 @ HyperBond/HyperAtom HB_HA HLT NaN a

Figure 5: TriaClick Systems Hierarchy

Both DataModel and DataResource modules correspond to TriaClick systems at the highest level of framework
hierarchy (Fig. 5). These two systems together with the HyperLinks system are responsible for managing
TriaClick metadata dictionary.

http://healis.eu/triaclick TriaClick Architectural Overview - 7/ 12

White Paper

5

TriaClick HyperStructures

The other component of TriaClick, which is based on ClickHouse, is managed and driven with the
HyperStructures module. The console interface here is implemented with the HyperCollection and
AssociativeSet classes. There are four types of HyperCollections in two categories, those that allow duplicates
(Entity, Attribute collections) and those that are sets of distinct elements (HyperBond, HyperAtom collections).

A HyperBond collection represents a set of Entity items (instances) and the HyperAtom collection represents the
domain set of values for an Attribute (Fig. 2). There is a Many-To-Many relationship between HyperBonds and
HyperAtoms. This relationship and attribute values for specific data types are stored in ClickHouse MergeTree
table engines and these construct the initial state of TriaClick associative semiotic hypergraph engine.

TriaClick AssociativeSet

Hyperbonds and Hyperatoms construct associations (Fig. 6). An association is the basic construct of
AssociativeSet, also called AssociativeEntitySet because it is always bounded to a single Entity. There is a direct
analogy of the relational data model with TriaClick data model:

Tuple : An ordered list of data values =~ ===> Association : A set of HyperAtoms that share a single HyperBond
Relation : A set of tuples ===> AssociativeSet : A set of associations

Body : Tuples of ordered values ===> Body : Named tuples, Set of HyperBonds, Sets of HyperAtoms
Heading : Tuple of ordered attribute names ===> Heading : Attributes of an Entity in a TriaClick Data Model

As we can see from the example that is illustrated in Fig. 6, missing values are ommitted from associations.
Another important difference of association from the relational tuple is that it does not require a heading
and/or ordering of its items.

TriaClick Chain Query Language (CQL)

AssociativeSet and HyperCollection objects take as property a CQL object. CQL is a Python generative class that
implements method chaining. TriaClick query is constructed by chaining various operators (methods) and
passing required or optional arguments.

For example (Fig. 6.), define a projection over the Supplier-Part-Catalog associative set (SPC object). For each
association display both HyperAtom keys and HyperAtom values together with their HyperBond key. Use this
key as the index of Pandas dataframe. In TriaClick this is an one line command:

SPC.cql.Over(key="$key', projection=aliases, out="assocs', format="key:value').Execute(index="$key").Result

and the result set can be returned in the form of associations (keys, values, or key-values) or in the classic
relational tuples format where missing values are replaced with Python None value, the equivalent of SQL null

(Fig. 6).

http://healis.eu/triaclick TriaClick Architectural Overview - 8/ 12

White Paper

In[18]: # Display Asseciations by defining a projection with attribute aliases
: aliases = 'supName, supCity, catPrice, catDate, prtName, prtColor’
: SPC.cql.Over(key='skey', projection=aliases, out='assocs', format='key:value').Execute(index="'5skey').Result

Qut[18]:

hatom_keys hatom_values
$key
(1, 1) ((13, 1), (8, &), (15, 1), (9, 2), (6, 8), (5, 1)) (ILLINOIS, Silver, Acme Widget Suppliers, Acme Widget Washer, 20.5, 2014-83-03)
(1, 2) ((13, 1), (15, 1), (9, 5), (6, 8)) (ILLINOIS, Acme Widget Suppliers, I Brake for Crop Circles Sticker, 20.5)
(1, 3) ((13, 1), (8, 3), (15, 1), (9, 1), (6, 14)) (ILLINOIS, Green, Acme Widget Suppliers, 7 Segment Display, 75.19999694824219)
(1, 4) ((13, 1), (8, 2), (15, 1), (9, 3), (6, 15)) (ILLINOIS, Cyan, Acme Widget Suppliers, Anti-Gravity Turbine Generator, 124.2380033569336)
(1, 5) ((13, 1), (8, 4), (15, 1), (9, 3), (6, 13)) (ILLINOIS, Magenta, Acme Widget Suppliers, Anti-Gravity Turbine Generator, 124.2300833569336)
(1, 6) ((13, 1), (8, 5), (15, 1), (9, 4), (6, 4), (5, 2)) (ILLINOIS, Red, Acme Widget Suppliers, Fire Hydrant Cap, 11.699999809265137, 2014-89-10)
(1, 7) ((13, 1), (8, 5), (15, 1), (9, &), (6, 10), (5, 3)) (ILLINOIS, Red, Acme Widget Suppliers, Left Handed Bacon Stretcher Cover, 36.099998474121094, 2014-12-20)
(1, 8) ((13, 1), (8, 1), (15, 1), (3, 7), (6, 11), (5, 3)) (ILLINOIS, Black, Acme Widget Suppliers, Smoke Shifter End, 42.29999923706055, 2014-12-28)
(1, 9) ((13, 4), (8, 5), (15, 3), (9, 4), (6, 3), (5, 1)) (OREGON, Red, Big Red Tool and Die, Fire Hydrant Cap, 7.949999809265137, 2014-83-03)
(1, 18) ((13, 4), (8, 4), (15, 3}, (9, 3), (8, 1), (5, 2)) (OREGON, Magenta, Big Red Tool and Die, Anti-Gravity Turbine Generator, 0.550000011920929, 2014-89-10)
(1, 11) ((13, 4), (8, 5), (15, 3}, (9, &), (&, 7), (5, 2)) (OREGON, Red, Big Red Tool and Die, Left Handed Bacon Stretcher Cover, 16.5, 2014-09-18)
(1, 12) ((13, 2), (8, 3), (15, 4), (9, 1), (6, 2)) (MADRID, Green, Perfunctory Parts, 7 Segment Display, 1.0)
(1, 13) ((13, 2), (s, 5), (15, 4), (9, 4), (6, 3)) (MADRID, Red, Perfunctory Parts, Fire Hydrant Cap, 12.5)
(1, 14) ((13, 3), (15, 2), (9, 5), (6, 9)) (NOTTINGHAM, Alien Aircaft Inc., I Brake for Crop Circles Sticker, 22.200000762939453)
(1, 15) ((13, 3), (8, 5), (15, 2), (9, 4), (6, 12), (5, 3)) (NOTTINGHAM, Red, Alien Aircaft Inc., Fire Hydrant Cap, 48.599998474121094, 2014-12-20)
(1, 16) ((13, 3), (8, 6), (15, 2), (9, 2), (6, 13), (5, 3)) (NOTTINGHAM, Silver, Alien Aircaft Inc., Acme Widget Washer, 57.29999923706055, 2014-12-20)
(1, 17) (13, 1), (8, 5), (15, 1), (9, 2), (6, &), (5, 1)) (ILLINOIS, Red, Acme Widget Suppliers, Acme Widget Washer, 15.300000196734863, 2014-03-03)
In[19]: # Display Tuples
...t SPC.cql.Over(projection=aliases, out='tuples').Execute(index='dim3, dim2, diml').Result
Out[19]:
supName supCity catPrice catDate pritName prtColor
dim3 dim2 diml
lee 1 1 Acme Widget Suppliers ILLINOIS 20.500000 2014-83-03 Acme Widget Washer Silver
2 Acme Widget Suppliers ILLINOIS 20.500000 None I Brake for Crop Circles Sticker None
3 Acme Widget Suppliers ILLINOIS 75.199997 None 7 Segment Display Green
4 Acme Widget Suppliers ILLINOIS 124.236003 None Anti-Gravity Turbine Generator Cyan
5 Acme Widget Suppliers ILLINOIS 124.230003 None Anti-Gravity Turbine Generator Magenta
6 Acme Widget Suppliers ILLINOIS 11.700008 2014-89-10 Fire Hydrant Cap Red
7 Acme Widget Suppliers ILLINOIS 36.899998 2014-12-20 Left Handed Bacon Stretcher Cover Red
8 Acme Widget Suppliers ILLINOIS 42.299999 2014-12-20 Smoke Shifter End Black
9 Big Red Tool and Die OREGON 7.950000 2014-93-03 Fire Hydrant Cap Red
10 Big Red Tool and Die OREGON 0.550000 2014-09-10 Anti-Gravity Turbine Generator Magenta
11 Big Red Tool and Die OREGON 16.500000 20814-09-10 Left Handed Bacon Stretcher Cover Red
12 Perfunctory Parts MADRID 1.000000 None 7 Segment Display Green
13 Perfunctory Parts MADRID 12.500000 None Fire Hydrant Cap Red
14 Alien Aircaft Inc. NOTTINGHAM 22.200001 None I Brake for Crop Circles Sticker None
15 Alien Aircaft Inc. NOTTINGHAM 48.599998 2014-12-20 Fire Hydrant Cap Red
16 Alien Aircaft Inc. NOTTINGHAM 57.299999 2014-12-20 Acme Widget Washer Silver

17 Acme Widget Suppliers ILLINOIS 1

w

.300000 2014-03-03 Acme Widget Washer Red

Figure 6: Projection over an AssociativeSet (SPC) and output in the form of associations (keys-values) or tuples

Operators that are already implemented in the current version of TriaClick are:
* Count, Average, Sum, (aggregation)
* Over (projection), Select (user input), Filter (associative filtering)
* Where, AND, OR, Between, In, Like, (conditions)
* Show (display ClickHouse SQL query)

* Execute (execute operations)

http://healis.eu/triaclick TriaClick Architectural Overview - 9/ 12

White Paper
5

Method chaining is a very popular development approach in python object-relational mappers (ORMs). Same as
ORM, CQL provides a high-level abstraction upon the query language of the DBMS, e.g. ClickHouse SQL. That
allows the developer to write Python code and to use object methods with a fixed set of arguments instead of
writing complex SQL code to create, read, update and delete data and schemas in the DBMS. CQL also makes it
theoretically possible to switch an application between different DBMS and also reuse the same queries in a
different project by modifying only the methods’ arguments. And because objects, i.e. data model and data
instances, are constructed dynamically from numerical key references that are stored in TriaClick databases; the
“impedance mismatch” problem disappears.

Interactive Data Exploration

Interactive, guided, ad hoc business query is arguably one of the most important key differentiating features of
TriaClick. Metadata specifications, managed by DataModel and DataResource modules (see TriaClick Systems),
are used to map Entities and Attributes, i.e. measures and dimensions, to the underlying physical structures of
ClickHouse. The purpose of this is to hide complexity from users and make it easier for them to select data for
filtering and aggregation operations.

Logical Inference

Currently user selections are implemented with CQL Select operator. After executing a CQL filtering operation
TriaClick engine immediately calculates all distinct values for each Attribute of an Entity that are relevant to the
selection. The engine not only filters the Entity, i.e. table, but also all the other attributes, i.e. columns,
instantaneously filter themselves based on that selection. This logical inference allow TriaClick engine to show
the user/developer not just which data is associated with user’s selections but also what data is excluded due to
these value selections. And since our logical data model is a HyperGraph (see TriaClick HyperGraphs) every
data point in the entire dataset is always associated with all other data points at all times. This means that
TriaClick engine allows a user to interact with a broader range of data than will ever be possible in SQL.
Technical and business users are free to search and explore the dataset based on the visual feedback they get
from TriaClick (currently in the form of pandas data frames only).

The main differences from other associative engines is that processing of interactive, free-form queries is
taking place on-disk thanks to the powerful columnar layout of ClickHouse and it is also possible to
append or modify data without reloading the whole or part of the original data set.

Furthermore another key differentiation factor from other SQL based systems is the ability to refine context. In
other data models entities and attributes are discrete, disconnected and don’t stay in context with one another.
Filtering doesn’t show the relationship or impact that selection has on objects within an application. In TriaClick
associative, semiotic, hypergraph data model user’s iterative interactions perform a progressive query
materialization (Fig. 7) that reflects at each step a new context for items of a data subset that are aware of
their position and their neighbours.

http://healis.eu/triaclick TriaClick Architectural Overview - 10/12

White Paper

: dm = DataModel(mysql_conn, clickhouse_conn, key=(2, 200, 0), debug=0)

: hbcol = HyperCollection(dm, 2, 28@, 1)
...1 # Create Associative Set
: Physicians = AssociativeSet(hbcol, reset=True)
... # Unfiltered State
: Physicians.count_values(coltype="HACOL', attributes='npi, groupTotal, school, org', order="key')

out[3]:

Attribute Distinct Values
(2, 200, 2) npi 1853573
(2, 200, 11) school 481
(2, 200, 19) org 72791
(2, 208, 21) groupTotal 615
In[4]: # First Selection and Initial Filtering

: selectionl = HyperCollection(dm, pattern='school').cql.Select().Where("Svalue").Like('%UNIVERSITY%")
: Physicians.cql.Filter(selectionl).Execute()}
: Physicians.count_values(coltype="HACOL', attributes='npi, groupTotal, school, org', order='key')

out[4]:

Attribute Distinct values
(2, 200, 2) npi 378846
(2, 208, 11) school 197
(2, 200, 19) org 47968
(2, 208, 21) groupTotal 615
In[5]: # Second Selection and Progressive Filtering

: selection2 = HyperCollection(dm, pattern='groupTotal').cql.Select().Where("Svalue").Between (500, 1000)
: Physicians.cql.Filter(selection2).Execute()
: Physicians.count_values(coltype="HACOL', attributes='npi, groupTotal, school, org', order="key')

out[5]:

Attribute Distinct Values
(2, 200, 2) npi 39088
(2, 200, 11) school 175
(2, 200, 19) org 136
(2, 208, 21) groupTotal 119
In[6]: # Third Selection and Progressive Filtering

: selection3 = HyperCollection(dm, pattern='org').cql.Select().Where("Svalue="COOK COUNTY'")
: Physicians.cql.Filter(selection3).Execute(}
: Physicians.count_values{coltype="HACOL', attributes='npi, groupTotal, school, org', order='key')

out[a]:

Attribute Distinct values
(2, 200, 2) npi 237
(2, 200, 11) school 60
(2, 200, 19) org 1
(2, 208, 21) groupTotal 1

Figure 7: Incremental query in three stages of progressive associative filtering

We can really think of TriaClick engine as a state machine for data sets. When we apply a selection and then ask
for filtering the data; the engine will propagate that filter across the data model based on TriaClick hyperlinks. In
the current implementation there are two different states for each distinct attribute value: One is the input state,
i.e. whether the value is selected or not; and the other is the ouput state, i.e. whether the value is associated with
those selected or excluded due to previous selected values (Fig. 2).

http://healis.eu/triaclick TriaClick Architectural Overview - 11/12

White Paper

Epilogue

“ Ted’s basic idea was that relationships between data items should be based on the item’s values, and not on
separately specified linking or nesting. This notion greatly simplified the specification of queries and allowed
unprecedented flexibility to exploit existing data sets in new ways. The idea of relying only on value-based
relationships was quite a radical concept at that time, and many people were skeptical. ” - Don Chamberlin,
co-inventor of SQL

Fifty years ago Codd was surrounded from network and hierarchical models, today IT professionals are also
surrounded with graph and document databases. Storage engines, with columnar layout, have been changed to
accommodate massive volumes of data on RAM and SSDs with distributed vectorised processing power but data
model standards did not follow that evolution. Perhaps the idea of relying on reference-based associations and
logical identifiers is quite a radical concept in present times but we have demonstrated its novelties and
advantages in TriaClick. We believe that associative semiotic hypergraph technology can make the difference in
the production of modern DBMS that are driven from a database management framework like TRIADB.

http://healis.eu/triaclick TriaClick Architectural Overview - 12 /12

	At A Glance
	Overview of Target
	Data Modeling at the Heart of Data Analysis
	Components of TriaClick Framework
	TriaClick Hypergraphs
	Quick comparison with graph network data models

	TriaClick User Environment
	TriaClick Systems
	TriaClick HyperStructures
	TriaClick AssociativeSet
	TriaClick Chain Query Language (CQL)

	Interactive Data Exploration
	Logical Inference
	TriaClick as a State Machine

	Epilogue

